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1 Introduction

The meson-meson interaction has been the key problem to test Chiral Perturbation Theory
(χPT ), which has proved rather successful at low energies [1, 2]. The underlying idea is
that an expansion in powers of the meson momenta converges at sufficiently low energy,
which in practice is

√
s ≤ 500 MeV. However, the convergence at higher energies becomes

progressively worse. Even more, one of the peculiar features of the meson-meson interaction
is the presence of resonances like the σ, f0, a0 in the scalar sector and the ρ, K∗ or the φ in
the vector channels. These resonances will show up in the T matrix as poles that cannot
be obtained using standard χPT . Nevertheless, the constraints imposed by chiral symmetry
breaking are rather powerful and not restricted to the region where χPT is meant to converge
[3].

Two independent approaches of non perturbative character have extended the use of
chiral Lagrangians to higher energies and have been rather successful, reproducing important
features of the meson-meson interaction including several resonances. Although these two
approaches look in principle rather different, they share a common feature which is the
imposition of unitarity. One of them [4, 5], based upon the Inverse Amplitude Method
(IAM), first suggested in [6], makes use of the lowest order, O(p2), as well as the next to
leading order, O(p4), Lagrangians. Elastic unitarity is imposed and thus no mixture of
channels is allowed. Then, the coefficients of the O(p4) Lagrangian are fitted to the data.
The absence of coupled channels has obvious limitations, but in spite of them, the IAM is
able to generate dynamically the ρ, K∗ and σ resonances, and to reproduce ππ scattering
in the (I,J)=(0,0), (1,1), (2,0) partial waves, as well as in the (3/2,0),(1/2,1) and (1/2,0)
channels of πK scattering. The results are very successful up to 1 GeV in all these channels
but the (0,0), where it only yields good results up to 700 MeV. The limitations of this single
channel approach become evident, for instance, in the f0(980) and a0(890) resonances (J=0
and I=0 and 1, respectively) which do not appear as poles in the T matrix. The method
also has a pathological behavior close to the T matrix zeros [7].

The second approach dealt with the J=0 sector alone [8]. The input consists of the O(p2)
Lagrangian, which is used as the source of a potential between mesons. This potential enters
in a set of coupled channel Lippmann-Schwinger (LS) equations (actually closer to Bethe-
Salpeter equations, since relativistic propagators are used) which leads to the scattering
matrix. The method imposes unitarity in coupled channels; hence it yields inelasticities
when inelastic channels open up. Amazingly, the approach has only one free parameter,
which is a cut-off that regularizes the loop integrals of the LS equation. Such a method
proves rather successful since phase shifts and inelasticities are reproduced accurately up to
1200 MeV. The f0(980) and a0(980) resonances appear as poles of the T matrix for I = 0
and 1, respectively, and their widths and partial decay widths are very well reproduced. In
addition, one finds a pole when I = 0 at

√
s ≃ 500 MeV with a width of around 400 MeV,

corresponding to the σ meson, which was also found with similar properties with the IAM
[5].

The appearance of the f0 and a0 is due to the introduction of the KK̄ channel in addition
to ππ in I = 0 and πη in I = 1. These resonances disappear if the KK̄ channel (not considered
in [4, 5]) is omitted, while the σ in I = 0 is almost not affected. This explains why the f0

and a0 resonances did not show up in the IAM [4, 5].
The success of the scheme of ref.[8] in the scalar sector gives hopes that it could be used

in other channels. However, one soon realizes that it does not reproduce properly the J =
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1 sector. This looks less surprising when one recalls that the O(p4) chiral Lagrangian can
be reproduced with the resonance saturation hypothesis [9]. That is, assuming that the ac-
tual values of the O(p4) parameters are basically saturated by resonance exchanges between
Goldstone bosons. In this way, one establishes a clear relation between the information con-
tained in the O(p4) Lagrangian and the resonances in the meson-meson sector, particularly
vector meson resonances, where the approach of [9] has its stronghold. Indeed, the absence
of the ρ and K∗ in the approach of [8], which only uses the O(p2) Lagrangian, is an indirect
confirmation of the link between these resonances and the O(p4) Lagrangian.

The approaches of [4, 5] and [8] seem complementary and one may wonder whether there
is a generalization of these methods, containing both them as limiting cases. An affirmative
answer to this question was recently found and such a generalized method was proposed
in [10]. The purpose of the present paper is to exploit the idea of [10] and obtain all the
predictions of such approach in the meson-meson sector, like phase shifts, inelasticities,
resonance properties, etc... At the same time we will establish the links between this scheme
and χPT at low energies. We also illustrate qualitatively, using a toy model, why the
proposed method is so successful when dealing with amplitudes dominated by resonances.

2 Unitary amplitude in coupled channels

Let us write the partial wave decomposition of the meson-meson amplitude with definite
isospin I as

TI = ΣJ(2J + 1) TIJ PJ(cosθ) (1)

where TIJ is the partial wave amplitude with isospin I and angular momentum J . In each
one of these channels there are several meson-meson states coupled to each other. In Table
I, we have listed these states for the J = 0, 1 channels, which contain the most relevant
meson-meson information below 1 GeV. Note that it is enough to take into account one or
two states in each channel since we are neglecting here, on the one hand, multipion states
which are only relevant for higher energies and, on the other hand, the ηη that appears for
(I, J) = (0, 0). The influence of this state is rather small. We have checked it following the
scheme of [8] and, although not zero, we found it small enough to omit it with the consequent
simplicity in the general formalism.

Hence, throughout the present work, TIJ will be either a 2 × 2 symmetric matrix when
two states couple, or just a number when there is only one state. In what follows we omit
the I, J labels and use a matrix formalism, which will be valid for the general case of n× n
matrices corresponding to n coupled states.

The normalization of T is such that

dσ

dΩ
=

1

64π2s

kf

ki
|Tif |2 (2)

where ki and kf are, respectively, the CM three momenta of the initial and final state and s
is the usual Mandelstam variable. Note that we have chosen a convention for the sign of T
such that in an elastic amplitude Im T ≤ 0.

Unitarity in coupled channels implies

Im Tif = Tin σnn T ∗
nf (3)
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where σ is a real diagonal matrix whose elements account for the phase space of the two
meson intermediate states n which are physically accessible. With the normalization that we
have chosen, σ is given by the imaginary part of the loop integral of two meson propagators
in the n state

σnn(s) = Im Gnn(s)

Gnn(s) = i
∫ d4q

(2π)4

1

q2 − m2
1n + iǫ

1

(P − q)2 − m2
2n + iǫ

(4)

Im Gnn(s) = − kn

8π
√

s
θ(s − (m1n + m2n)2)

where kn is the on-shell CM momentum of the meson in the intermediate state n, P is the
initial total four-momentum and m1n, m2n the masses of the two mesons in the state n. An
analytical expression for Gnn(s) using a cut-off (qmax) regularization in the integral over d3q
is shown in Appendix A.

From eq.(3) we can extract σ and express it, in matrix form, as

Im G=T−1 · Im T · T ∗−1

=
1

2i
T−1 · (T − T ∗) · T ∗−1

=
1

2i
(T−1∗ − T−1) = −Im T−1 (5)

Hence,

T−1=Re T−1 − iIm G

T =[Re T−1 − i Im G]−1 (6)

This is a practical way to write the unitarity requirements of eq.(3) which tells us that
we only need to know Re T−1 since Im T−1 is given by the phase space of the intermediate
physical states.

The next point is to realize that the T matrix has poles associated to resonances, which
implies that the standard perturbative evaluation of χPT will necessarily fail close to these
poles. As a consequence, one might try to exploit the expansion of T−1, which will have zeros
at the poles of T, and in principle does not present convergence problems. For illustrative
purposes, we can use an analogy with the function tan x when expanded around x = 0 (x
playing here the role of p2 in the chiral expansion). This function has a pole at x = π/2.
Its inverse, cotx, has a Laurent expansion around x = 0 and a zero at x = π/2. However,
inverting the expansion of cotx around x = 0 for values of x near π/2, provides a faster
convergence than expanding directly tanx around that point. With this idea in mind let us
expand T−1 in powers of p2 as one would do for T using χPT :

T ≃ T2 + T4 + ...

T−1 ≃ T−1
2 · [1 + T4 · T−1

2 ...]−1 ≃ T−1
2 · [1 − T4 · T−1

2 ...] (7)
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This expression requires the inversion T2 which might not be invertible, as it happens, for
instance in the (1, 1) channel. In order to avoid the use of T−1

2 we modify eq.(6) by formally
multiplying by T2 · T−1

2 on the right and T−1
2 · T2 on the left. All the steps are justified using

the continuity of the functions involved in the derivation, starting from a matrix close to T2,
which can be inverted. Thus, eq.(6) can be rewritten as

T = T2 · [T2 · Re T−1 · T2 − iT2 · Im G · T2]
−1 · T2 (8)

Now, using the expansion for T−1 of eq.(7) we find

T2 · Re T−1 · T2 ≃ T2 − ReT4 + ... (9)

and recalling that

Im T4 = T2 · Im G · T2 (10)

we finally obtain, within the O(p4) approximation

T = T2 · [T2 − T4]
−1 · T2 (11)

Note, as it is clear from eq.(8), that what we are expanding is actually T2 · Re T−1 · T2,
which in our analogy would be equivalent to x2cot x, which is also convergent around x = 0.

In another context, the above equation can also be derived using Padé approximants [11].
This equation is a generalization to multiple coupled channels of the IAM of ref.[4, 5]. It
makes the method more general and powerful and also allows to evaluate transition cross
sections as well as inelasticities.

The coupled channel result has additional virtues with respect to the single channel IAM.
Indeed, in this latter case the expansion of eq.(7) is meaningless if |T2| < |T4| or T2 = 0 [7].
In particular, if T2 vanishes, eq.(11) yields T = T 2

2 · T−1
4 , which has a double zero, whereas

the correct result would be T ≃ T4. This indeed occurs in the J = 0 partial waves below
threshold (Adler zeros). However, within the coupled channel formalism, if a matrix element,
say (T2)11, vanishes, it is sufficient that (T2)12 6= 0, since then eq.(11) gives (T )11 ≃ (T4)11,
which is the correct result. In conclusion, while the single channel IAM gives a double zero
whenever T2 = 0, the coupled channel method leads to single zeros close to the zeros of T2.

The single channel IAM has another related problem, since close to the Adler zero it
presents an spurious pole when T2 = T4. The coupled channel method also avoids this
problem, although it runs into a similar one when the determinant of the T2 − T4 matrix
vanishes below threshold. This happens indeed for J = 0, I = 0 around

√
s ≃ 120 MeV.

Excluding the neighborhood of this zero of the determinant, we can still recover from eq.(11)
the usual χPT expansion, T ≃ T2 + T4 + ... valid for low energies, typically |√s| < 500
MeV. In any case we concentrate here on results above the two pion threshold.

It is now important to realize that eq.(11) requires the complete evaluation of T4, which is
rather involved when dealing with many channels, as it is the case here. Instead, we present
a further approximation to eq.(11) which turns out to be technically much simpler and rather
accurate. In order to illustrate the steps leading to our final formula, let us make before
another approximation. Let us assume that through a suitable cut-off we can approximate

Re T4 ≃ T2 · Re G · T2 (12)

In such a case we go back to eqs.(8, 9) and immediately write
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T = [1 − T2 · G]−1 · T2 (13)

that is equivalent to

T = T2 + T2 · G · T (14)

which is a LS equation for the T matrix, where T2 plays the role of the potential. This is
actually the approach followed in ref. [8].

There is a subtle difference between eq.(14) and the ordinary LS integral equation. In-
deed, eq.(14) is an algebraic equation since T2 and T are factorized out of the integrals with
their on-shell value. In contrast, in the ordinary LS equations, the T2GT term is actually
the integral of eq.(4), including T2 and T inside the integral, since both of them depend on
q. Due to the structure of the O(p2) Lagrangian, it was shown in [8] that writing T2(q) as
T onshell

2 (q) + T offshell
2 (q), the off-shell part renormalizes couplings and masses and hence it

had to be omitted. Therefore T2, and T factorized outside the integral with their on-shell
values. As a consequence, the very same algebraic equation (14) was obtained.

As we have already commented, the approximation of eq.(12) leads to excellent results
in the scalar channels. However, as we mentioned in the introduction, the generalization to
J 6= 0 is not possible since basic information contained in the O(p4) chiral Lagrangian is
missing in eq.(12). The obvious solution is to add a term to eq.(12) such that

Re T4 ≃ T P
4 + T2 · Re G · T2 (15)

where T P
4 is the polynomial tree level contribution coming from the O(p4) Lagrangian, whose

terms contain several free parameters, usually denoted Li. Within our approach, these
coefficients will be fitted to data and denoted by L̂i since they do not have to coincide with
those used in χPT , as we shall see. Actually, the Li coefficients depend on a regularization
scale (µ). In our scheme this scale dependence appears through the cut-off.

In addition, there are also differences between our renormalization scheme and that of
standard χPT . Indeed, our approach considers the iteration of loop diagrams in the s-
channel, but neglects loops in the u or t channels. However, the smooth structure of these
terms for the physical s-channel, since we are far away from the associated singularities,
allows them to be approximately reabsorbed when fitting the L̂i coefficients. Concerning
tadpoles, they would be exactly reabsorbed in the L̂i in the equal mass case. Therefore,
when masses are different, we are omitting terms proportional to differences between the
actual masses squared and an average mass squared. Thus all these contributions will make
the L̂i differ from the Li, although we expect them to be of the same order.

This way of dealing with tadpoles has an additional advantage. Apart from the usual
tadpole diagrams that would also appear in standard χPT there are some additional tadpole
terms. They come from the determinant of the SU(3) metric that should be included in the
path integral measure in order to make the generating functional SU(3) covariant [13]. With
dimensional regularization such contributions vanish, but that is not the case when using a
cutoff regularization [14]. Nevertheless, we have just described how tadpoles are absorbed
within our approximation and thus we do not have to calculate them.

With these approximations our calculations have been considerably simplified at the ex-
pense of losing some precision at low energies with respect to the full O(p4) χPT calculation.
As far as we are mostly interested in resonance behavior as well as higher energies this is
not very relevant. Nevertheless, if the complete O(p4) calculations were available, we could
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directly use eq.(11), and have both an accurate low energy description and a good coupled
channel unitarity behavior.

Using eqs.(8) and (9), our final formula for the T matrix is given by

T = T2 · [T2 − T P
4 − T2 · G · T2]

−1 · T2 (16)

3 Toy model

In order to illustrate how the method works, we take a simple case of one channel and one
amplitude around a resonance which we assume to know exactly. That is,

T =
ap2

q2 − M2 + i 2MΓ
(17)

where p2 is an invariant quantity, of dimension momentum squared, related to the momenta
or masses of the pseudoscalar mesons, q the total four-momentum of the meson pair and
2MΓ = −ap2Im G. The above equation satisfies unitarity exactly as can be seen by using
eq.(5).

To O(k2), k ≡ p, q, we have

T2 = −a
p2

M2
(18)

whereas at O(k4) we have

Re T4 = −ap2q2

M4
≡ T2

q2

M2
(19)

Then, using eq.(11) we find

T =
T 2

2

T2 − Re T4 − iT2Im GT2
= − ap2

M2(1 − q2

M2 + ia p2

M2 Im G)

=
ap2

q2 − M2 − iap2Im G
(20)

So, as we can see, in this particular case the IAM leads to the exact result for the T
matrix, eq.(17). The result is exact here because T2 · ReT−1 · T2 is an O(k4) function and
hence the expansion up to O(k4) in eq.(9) is exact. However, the structure of eq.(17) is that
of a meson propagator of an unstable particle like the f0, a0, ρ, K∗, etc... resonances. This
could justify why the scheme which we propose works even better that one could naively
anticipate, at least for resonant channels.

The above argumentation uses the same power counting in momenta as χPT , but pre-
sumes that the O(k2) amplitude comes from the exchange of a resonance. This seems to
be in conflict with [9], where it is shown that resonance exchange contribution shows up at
higher orders. However, when taking into account requirements of short distance behavior
of QCD, these two points can be reconciled. In fact, this has been shown, in [15], where
a classical vector meson dominance expression for the pion form factor is obtained, in the
same lines as eq.(17), starting from chiral Lagrangians and imposing those QCD constraints
at short distances and the large Nc limit.
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In relation to the previous arguments, the link between unitarized χPT and vector meson
dominance has also been discussed in [16].

4 The matrix elements of T2 and T4.

The lowest order chiral Lagrangian is given by

L2 =
f 2

4
〈∂µU

†∂µU + M(U + U †)〉 (21)

where f is the pion decay coupling and 〈〉 stands for the trace of the 3 × 3 matrices build
out of U(Φ) and M .

U(Φ) = exp(i
√

2Φ/f) (22)

where Φ can be expressed in terms of the Goldstone boson fields as

Φ(x) ≡









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η









(23)

The mass matrix M is given by

M =







m2
π 0 0

0 m2
π 0

0 0 2m2
K − m2

π





 (24)

where we have assumed the isospin limit mu = md.
The O(p4) Lagrangian is given by

L4=L1〈∂µU
†∂µU〉2 + L2〈∂µU

†∂νU〉〈∂µU †∂νU〉
+L3〈∂µU

†∂µU∂νU
†∂νU〉 + L4〈∂µU †∂µU〉〈U †M + M †U〉

+L5〈∂µU
†∂µU(U+M + M+U)〉 + L6〈U †M + M+U〉2

+L7〈U †M − M †U〉2 + L8〈M †UM †U + U †MU †M〉 (25)

where the terms which couple to external sources are omitted [1].
The states with definite isospin, with the phases |π+〉 = −|1, 1〉, |K−〉 = −|1/2 − 1/2〉,

are given by

I = 0,

|KK̄〉 = − 1√
2
|K+(~q)K−(−~q) + K0(~q)K̄ 0(−~q)〉

|ππ〉 = − 1√
6
|π+(~q)π−(−~q) + π−(~q)π+(−~q) + π0(~q)π0(−~q)〉

I = 1, I3 = 0,

|KK̄〉 = − 1√
2
|K+(~q)K−(−~q) + K0(~q)K̄ 0(−~q)〉

8



|πη〉 = |π0(~q)η(−~q)〉

|ππ〉 = −1

2
|π+(~q)π−(−~q) − π−(~q)π+(−~q)〉

I = 2, I3 = 2,

|ππ〉 =
1√
2
|π+(~q)π+(−~q)〉

I = 1/2, I3 = 1/2,

|Kπ〉 = −|
√

2

3
π+(~q)K0(−~q) +

1√
3
π0(~q)K+(−~q)〉

|Kη〉 = |K+(~q)η(−~q)〉

I = 3/2, I3 = 3/2,

|Kπ〉 = −|K+(~q)π+(−~q)〉

We should note that in the states of identical particles we have included an extra 1/
√

2
factor in the normalization. This is done to ensure that the resolution of the identity gives
unity (recall that Σq|π0(~q)π0(−~q)〉〈π0(~q)π0(−~q)| = 2 with the states π0(~q)π0(−~q) normalized
to unity). This normalization yields the ordinary unitarity formulae, eq.(3), which we are
using to extract phase shifts and inelasticities. However, we should return to the proper
normalization at the end in order to obtain the physical amplitudes.

The amplitudes which we obtain are compiled in Appendix B. The projection over each
partial wave J is done by means of

TIJ =
1

2

∫ 1

−1
PJ(cos θ) TI(θ)d(cos θ) (26)

In the case of two coupled channels, TIJ is a 2 × 2 matrix whose elements, (TIJ)ij are
related to S matrix elements through the equations (omitting the I, J labels)

(T )11 = −8π
√

s
2ip1

[(S)11 − 1] , (T )22 = −8π
√

s
2ip2

[(S)22 − 1]

(T )12 = (T )21 = − 8π
√

s
2i
√

p1p2
(S)12

(27)

with p1, p2 the CM momenta of the mesons in state 1 or 2 respectively. The S matrix has
the structure [17]

S =

[

ηe2iδ1 i(1 − η2)1/2 ei(δ1+δ2)

i(1 − η2)1/2 ei(δ1+δ2) ηe2iδ2

]

(28)

where δ1 and δ2 are the phase shifts for the elastic 1 → 1 and 2 → 2 processes (for instance,
K̄K → K̄K and ππ → ππ in (I, J) = (0, 0)) and η is the inelasticity.

It is interesting to note that, by means of (T )11 and (T )22 one can determine η, δ1 and
δ2, and hence the (T )12 = (T )21 matrix elements are redundant. We determine them from
our coupled equations and verify that the structure of eq.(27) is satisfied, which is another
check of the coupled channel unitary that we have imposed from the beginning.
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5 Results

We have carried out a fit to the data, which is shown in figs. 1 to 7, using as free parameters
the L̂i with i = 1, 2, 3, 4, 5, 7 and 2L̂6 + L̂8. The cut-off is fixed to qmax = 1.02 GeV. The
values which we obtain are shown in Table II. By comparing them with the standard values
for the Li coefficients obtained in χPT at the scale µ = 2 qmax/

√
e (see appendix A.2) we

see that they are of the same order.
We show first the results on phase shifts and inelasticities in the different channels and

later on we discuss about the pole positions, widths and partial decay widths.

5.1 Phase shifts and inelasticities

We will now go in detail through the results in each (I,J) channel.

5.1.1 Channel (0,0)

As we can see in eq.(27) we have three independent magnitudes δ1, δ2 and η. In figs.(1.a) and
(1.c) we show the δ1 and δ2 corresponding to ππ → ππ and KK̄ → KK̄ elastic scattering.
In fig.(1.b) we plot the phase shift for KK̄ → ππ. This is actually δ1 + δ2, which is therefore
redundant information. However, there are data for this process but not for elastic KK̄,
and that is why we are plotting δ1 + δ2. The agreement with experiment is good, with small
discrepancies in the KK̄ → ππ phase shifts. In fig.(1.a) we see a bump around 600 MeV
which is due to the σ resonance, whose associated pole appears around 442 − i225 MeV, as
we shall see below. The fast raise in the phase shift at 1 GeV is caused by the f0 pole around
980 − i14 MeV, which translates in an apparent mass of ≃ 980 MeV and a 30 MeV width.
Small discrepancies with data start showing up around 1.2 GeV. The omission of the ηη and
four meson states should limit the validity of the approach at high energies since then these
channels start being relevant.

5.1.2 Channel (1,1)

In fig.(2.a) we display the ππ → ππ phase shifts which clearly show the ρ meson. The perfect
coincidence of the results with the very precise data indicate that both the position and the
width of the ρ are very well described. In fig.(2.c) we show the phase shifts for KK̄ → KK̄
scattering, for which there are no data. As we can see, they are very small, which implies a
weak KK̄ interaction. Therefore the δ1 + δ2 phase shift of KK̄ → ππ is essentially that of
ππ → ππ. The fact that the inelasticity is practically one, indicates that there is almost no
mixture of ππ and KK̄. This feature makes the ρ to behave as a pure ππ elastic resonance.
That is why the single channel IAM gave essentially the same results as obtained here [4].

5.1.3 Channel (2,0)

The I = 2 ππ scattering contains only one state as shown in Table I. In fig.(3) we show the
resulting phase shifts, whose agreement with experimental data is remarkably good up to
1.2 GeV
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5.1.4 Channel (1,0)

In fig.(4.a) the πη → πη phase shifts are shown. Those of KK̄ → KK̄ are plotted in
fig.(4.b) and the inelasticities in fig.(4.c). In the latter, it can be seen that there is an
appreciable mixture between πη and KK̄ above KK̄ threshold. In fig.(4.d) we compare
a mass distribution for πη around the region of the a0 resonance. The data are obtained
from [34] using the K−p → Σ+(1385)πη reaction, whose cross section (following [35]) can be
written as

dσ

dm
= C|t|2q (29)

where m is the π−η invariant mass, q the π momentum in the π−η CM frame, t the
π−η → π−η scattering amplitude and C a normalization constant. We observe a fairly
good agreement with the experimental numbers.

5.1.5 Channel (1/2,0)

The two coupled states are now Kπ and Kη. In Fig.(5.a) we plot the phase shifts for
Kπ → Kπ. The agreement of the results with the data is quite good, although a bit on the
upper part. The results and the data show a broad bump, which is related to the presence
of a pole which appears around 770− i250 MeV. Such a resonance, whose existence has been
claimed in a recent data analysis [41], is predicted in quark models of q2q̄2 systems [40] and
is usually denoted by κ(900). This resonance bears some similarity with the σ in the (0,0)
ππ elastic scattering channel, which is also very broad. Finally, the Kη → Kη phase shifts
are small as shown in fig.(5.c) and the inelasticities given in fig.(5.d) are not distant from
unity. This fact indicates a small mixture of Kπ with Kη.

5.1.6 Channel (1/2,1)

In this case we also find a resonance in fig.(6.a), analogous to the ρ, but in the Kπ system.
This resonant state, known as the K∗(892), is as clean as the ρ, and the agreement of our
results with the data is remarkably good over the whole range of energies up to 1.2 GeV. In
fig.(6.c) we plot the Kη → Kη phase shifts, which are very small. Finally, in fig.(6.d) we
can notice that η ≈ 1 which means that there is practically no mixture of Kπ and Kη in
this channel. This justifies the success of [4] reproducing this resonance using only the Kπ
state and elastic unitarity.

5.1.7 Channel (3/2,0)

In fig.(7) we show the Kπ phase shifts. As we can see in the figure, the agreement with the
data is quite good up to about 1.2 GeV.

The channel (3/2,1) in Kπ (see table I) is such that T2 = 0, since there is only S-wave
there. In this case our method cannot be applied, as discussed above, and we should just
take the T4 contribution. That also happens for the J = 2 channels, since the structure of
T2, which is O(p2), is a linear combination of s, t, u and squared masses. Therefore there is
only J = 0, 1 in T2, but not J = 2. Hence, the lowest contribution can only be obtained from
the T4 terms and our method has nothing to improve there with respect to χPT . The phase
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shifts in these channels are small and have been discussed in [4]. Hence we omit any further
discussion, simply mentioning that the agreement with data found in [4] is fairly good.

There is another interesting result in the (0,1), channel which is the appearance of a pole
around 990 MeV, that we show in fig.(8). Below 1.2 GeV there are two resonances with such
quantum numbers. They are the ω and the φ, which fit well within the qq̄ scheme, with
practically ideal mixing, as 1√

2
(uū + dd̄) and ss̄, respectively. Hence, the ω would almost

decouple from KK̄ and then we should not expect it to appear in our scheme with only the
KK̄ channel. The three pion channel, into which the ω mostly decays, is not considered in
our approach, restricted to two meson states. In contrast, the φ couples strongly to the KK̄
system. It seems then natural to identify the above mentioned pole with the φ. Indeed, it
is only 30 MeV below its real mass, 1020 MeV (which means a relative deviation of only 3
%). Due to this shift towards lower energy this resonance appears below the KK̄ threshold
and this is why we find no width at all. Nevertheless, as far as its physical width is only
≃ 4 MeV, it seems plausible that that the small coupling to three pions (an OZI suppressed
coupling of third class) which we are not taking into account, could be enough to improve
the agreement between the position of our φ resonance and its real mass and width.

5.2 Pole positions, widths and partial decay widths.

We will now look for the poles of the T matrix in the complex plane, that should appear in
the unphysical Riemann sheets ( the conventions taken are those of [8], which can be easily
induced from the analytical expressions of Appendix A). Let us remember that the mass
and the width of a Breit-Wigner resonance are related to the position of its complex pole
by

√
spole ≃ M − iΓ/2, but this formula does not hold for other kind of resonances. In table

II we give the results for the pole positions as well as the apparent or “effective” masses
and widths that can be estimated from phase shifts and mass distributions in scattering
processes. Note that such “effective” masses and widths depend on the physical process.

We shall make differentiation between the ρ and K∗, which are clean elastic Breit-Wigner
resonances, and the rest. For the ρ and K∗ their mass is given by the energy at which δ = 900

and the width is taken from the phase shifts slope around δ = 900, by means of

ΓR =
M2

R − s

MR
tan δ(s) (30)

We also saw that, in practice, the ρ and K∗ only couple to ππ and Kπ, respectively. The
σ decays only to ππ and the κ only to Kπ due to phase space and dynamical suppression
of other channels (see fig.(5d)). The case of the f0 and a0 is different, since they can decay
either to ππ or KK̄ (the f0), and πη or KK̄ (the a0). In order to determine the partial decay
widths of these resonances we follow the procedure of [8], where we show that, assuming a
Breit Wigner shape for the amplitudes around the resonance pole, the partial decay widths
are given by

ΓR,1=
1

16π2

∫ Emax

Emin

dE
q

E2
4MRIm T11

ΓR,2=− 1

16π2

∫ Emax

Emin

dE
q

E2
4MR

(Im T21)
2

Im T11
(31)

where E stands for the total CM energy of the meson-meson system, q is the momentum of
one meson in the CM and the labels 1, 2 stand for KK̄, ππ in the case of the f0 and KK̄,
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πη in the case of the a0. The masses of the final mesons are m1, m2. The upper limit in
the integral, Emax, is ≃ MR + ΓR where ΓR is the total width [8] and Emin = MR − ΓR,
unless the threshold energy (m1 + m2) for the decay is bigger than that quantity, in which
case Emin = m1 + m2. In this way we largely avoid the contribution of the backgrounds in
the amplitudes. One caveat must be raised concerning eq.(31), which was already pointed
out in the study of the f0 → γγ decay [43]. The subtlety is that around this resonance the
phase shifts (see fig.(1.a)) are of the order of 900, due to the background coming from the
broad σ pole. This background makes the f0 → ππ coupling constant to appear effectively
multiplied by a π/2 phase (i factor) and in this way the T12 amplitude around the f0 looks
like an ordinary Breit Wigner multiplied by i. This means that the real part has a peak
around the resonance and the imaginary part changes sign. In this case the arguments used
in [8] and [43] lead to a trivial modification in ΓR,2, where Im T12 should be substituted by
Re T12.

It is also very instructing to see the representation of the poles in a three dimensional
plot. In fig.(9) we are showing on the left the imaginary part of the (0,0) ππ → ππ scattering
amplitude on the second Riemann sheet. It is possible to see very clearly the appearance
of two poles that correspond to the σ and the f0 resonances. The former is located at
442− i227 and thus is very far away from the real axis, which implies a huge effective width.
In contrast, the other pole is located at 994 − i14 MeV accordingly to the narrow width of
the f0 resonance.

Apart from the position of the poles, there is an additional piece of information which
also determines the observed shape of a resonance. It also explains some of the differences
between the “effective” masses and the real part of the pole position. On the right of fig.(9)
we give a contour plot, again of the imaginary part of the (0,0) amplitude in the second
Riemann sheet. Notice that both poles are oriented differently, almost transversally, on the
complex plane. On the one hand, the f0 pole is oriented almost perpendicularly to the real
axis, which is the relevant one in this work. As a consequence, in the positive real axis, the
imaginary part of the amplitude first grows rapidly and then drops very fast again, giving
rise to the dramatic variation of the phase shift typical of resonances. A similar orientation
is found for the ρ, K∗ and a0 resonances too. On the other hand, the σ pole is oriented so
that in the real axis we only see a slow and smooth increase, but almost no decrease, of the
imaginary part. That is also the case of the κ resonance. This feature, together with the
fact that both the σ and the κ are very far from the real axis explains why it is so hard to
establish firmly their existence and their physical parameters.

Finally, in fig.(10) we present a very detailed contour plot of the ρ and a0 poles. Both of
them are almost perpendicular to the real axis, but the former is tilted clockwise, whereas the
latter is tilted anti-clockwise. Let us now remember that the real part of the pole position,
roughly, should give us the apparent mass of the resonance. However, the lines of maximum
gradient of each pole cross the real axis at a point which is slightly different from the real
part of its position. Therefore, those poles rotated clockwise, as the ρ or the K∗, have an
apparent mass a little bit higher than that given by the pole position. In contrast those
tilted anti-clockwise, yield a resonance whose mass is somewhat lower that the one obtained
from the pole. That is the case of the f0 and the a0.
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6 Conclusions and Outlook

We have used a coupled channel unitary approach, together with the dynamical information
contained in the O(p2) and O(p4) chiral Lagrangian, which allows us to study the meson-
meson interaction up to about 1.2 GeV. This non-perturbative method generates poles in
the complex plane corresponding to physical resonances. We have used the experimental
information available to make a fit of the O(p4) Lagrangian coefficients. These are L̂i,
i = 1, 2, 3, 4, 5, 7 and 2L̂6 + L̂8, whose actual values depend on the cut-off that we have used
to regularize divergent one loop integrals. With those seven degrees of freedom we are able
to fit, up to 1.2 GeV, all the experimental information in seven meson-meson channels. Each
one of this channels consists of two phase shifts and an inelasticity. Moreover, in our results,
we obtain the position and widths, partial decay widths, etc.... of all the resonances that
appear in those channels below 1.2 GeV. Apart from the standard f0, a0, ρ, K∗ resonances,
we find poles in the T matrix for the σ in the ππ I = J = 0 channel and for κ in the (1/2,0)
channel, both them very broad.

The method has proved very efficient to extend the ideas of chiral symmetry at energies
beyond the realm of applicability of χPT . However, at energies higher than 1.2 GeV, the
limitations of the model show up, since, among other things, we have restricted ourselves
only to two meson states. The restrictions in the space of states precluded the appearance of
the ω resonance which couples dominantly to three pions. However, the φ resonance which
couples strongly to KK̄ does appear in the scheme, although slightly shifted towards lower
energies. Presumably, by including the φ coupling to three pions, although very small, it
should be enough to shift the mass to its correct place.

One of the formal weakness of the approach is that loops in crossed channels, as well
as some tadpole contributions, are not explicitly included in the calculation. In practice,
their effect can be reabsorbed in the fit of the O(p4) parameters, whose values can then be
different from those obtained for the standard low energy χPT approach.

This approximation could be improved by using eq.(11) with the full O(p4) χPT calcu-
lation, which includes one loop in crossed channels and the tadpoles. This would allow a
more straightforward comparison with standard χPT as well as a better accuracy in the low
energy results. Although such calculations are welcome and there is indeed some work in
progress [44], they are far more involved to calculate and use.

Applications of the method to other physical problems are also in order. Indeed, it can be
easily extended to deal with processes where meson pairs appear in the initial or final state,
like meson pair photoproduction [43]. It looks likely that it could also prove useful describing
the meson-nucleon interaction [45] complemented with Heavy Baryon Chiral Perturbation
Theory. In addition, the method, non perturbative in nature, is equally well suited to study
the meson-meson interaction in a nuclear medium where there has been some speculation
about the appearance of bound ππ pairs [46].

Finally it seems that the approach could be extended to the effective chiral Lagrangian
description of the Standard Model Strongly Interacting Symmetry Breaking Sector, where
the single channel approach has already been applied [47].

Acknowledgments

We are grateful to A. Dobado for discussions concerning the tadpole contributions and for
his careful reading of the manuscript. Two of us, J.A.O and E.O. would like to thank

14



the kind hospitality of the Complutense University of Madrid. J.R.P. wishes to thank the
hospitality of the University of Valencia and the SLAC Theory Group. This work was
partially supported by DGICYT under contracts PB96-0753 and AEN93-0776. J. A. O. and
J.R.P. acknowledge financial support from the Generalitat Valenciana and the Ministerio de
Educación y Cultura, respectively.

A Analytical formula for G(s): Relation between cut-

off and dimensional renormalization

In this appendix we are showing the relationship between our regularization scheme and
dimensional regularization, which is the usual one when dealing with χPT .

A.1 Analytical formula for G(s) with a cut-off regularization

In the general case with different masses, M1 and M2

G(s)=
1

32π2

[

− ∆

s
log

M2
1

M2
2

+
ν

s















log
s − ∆ + ν

√

1 +
M2

1

q2
max

−s + ∆ + ν

√

1 +
M2

1

q2
max

+ log
s + ∆ + ν

√

1 +
M2

2

q2
max

−s − ∆ + ν

√

1 +
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2

q2
max















+2
∆

s
log

1 +

√

1 +
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2

q2
max
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√

1 +
M2

2

q2
max

− 2 log

[



1 +

√

√

√

√1 +
M2

1

q2
max







1 +

√

√

√

√1 +
M2

2

q2
max





]

+ log
M2

1 M2
2

q4
max

]

(32)

where ν =
√

(s − (M1 + M2)2)(s − (M1 − M2)2) and ∆ = M2
1 − M2

2 . In the case of equal
masses, M1 = M2 = m, the above formula reduces to

G(s) =
1

(4π)2



σ log
σ
√

1 + m2

q2
max

+ 1

σ
√

1 + m2

q2
max

− 1
− 2 log







qmax

m



1 +

√

√

√

√1 +
m2

q2
max













 (33)

where now, σ =
√

1 − 4m2/s.

The numerical evaluation of the principal part of eq.(4) is also performed as an additional
check.

A.2 Relation between the cut-off and the dimensional regulariza-
tion scale

In order to obtain the relationship between the cut-off and the renormalization scale µ
let us consider, for the sake of simplicity, the case with equal masses (the same result is
obtained with different masses but the formulas are more cumbersome). As far as we are
going to compare the same function calculated in different ways, let us denote by GC(s) the
G(s) calculated with a cut-off regularization and GD(s) the one calculated with dimensional
regularization. In this latter case we have
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GD(s) =
1

(4π)2

[

1

ǫ̂
− 2 + log m2 + σ log

σ + 1

σ − 1

]

(34)

where 1/ǫ̂ = 1/ǫ − log(4π) + γ with D = 4 + 2ǫ.
The scale µ in GD(s) appears through the inclusion of the Li [2] at O(p4)

Li = Lr
i (µ) + Γiλ (35)

where Lr
i (µ) is the renormalized value of Li at the µ scale, Γi is just a number and

λ =
1

32π2

[

1

ǫ̂
+ log µ2 − 1

]

(36)

The log µ2, and its companion 1
ǫ̂
− 1, are incorporated in GD(s) so that at the end one

has a logarithm of the dimensionless quantity m2/µ2. In this way we rewrite GD(s) as:

GD(s) =
1

(4π)2

[

−1 + log
m2

µ2
+ σ log

σ + 1

σ − 1

]

(37)

We expand eq.(33) in powers of m2/q2
max to compare with the cut-off regularization, as

follows

GC(s)=
1

(4π)2

[

−2 log
2qmax

m
+ σ log

σ + 1

σ − 1
+ O

(

m2

q2
max

)]

=
1

(4π)2

[

−1 + log e + log
m2

4 q2
max

+ σ log
σ + 1

σ − 1
+ O

(

m2

q2
max

)]

=
1

(4π)2

[

−1 + log
m2 e

4q2
max

+ σ log
σ + 1

σ − 1
+ O

(

m2

q2
max

)]

(38)

Then comparing eqs.(37) and (38) one has:

µ =
2 qmax√

e
≃ 1.2 qmax (39)

Hence, to our cut-off qmax ≃ 1 GeV would correspond a µ = 1.2 GeV dimensional
regularization scale. In Table II, we have listed the values of the L̂i parameters and those
of standard χPT scaled to µ = 1.2 GeV. As it is explained in the text, in our fit we have
neglected the crossed channel diagrams and we have treated tadpoles differently. The effect
of these contributions is effectively reabsorbed in our L̂i parameters, hence some differences
between the L̂i and Li parameters should be expected and this is indeed the case as can be
seen in Table II. Note that, even if we had used the complete O(p4) χPT calculations, these
parameters could be different, since they have been obtained from a fit over a much wider
range of energies than it is used in χPT and higher order contributions have been included.

Finally, note that the terms O(m2/q2
max) in eq.(38) yield O(p6), or higher, contributions

and that is why they are not included in GD(s).
It is also worth stressing that the relationship of eq.(39) is independent of the physical

process and channel since the function G(s) appears in all them in the same way.
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B Amplitudes

We have used the following formulae in our calculations. Note that, as it has been explained
in the text, we have an overall sign of difference with the definitions in [1], as well as a 1/2
factor for those amplitudes with identical particles.

B.0.1 Masses and decay constants

fπ =f0

[

1 +
4m2

π

f 2
0

(L5 + L4) +
8m2

K

f 2
0

L4

]

fK =f0

[

1 +
4m2

K

f 2
0

(L5 + 2L4) +
4m2

π

f 2
0

L4

]

fη =f0

[

1 +
4m2

η

f 2
0

L5 +
8m2

K + 4m2
π

f 2
0

L4

]

(40)

m2
π =m2

0 π

[

1 +
8m2

π

f 2
0

(2L6 + L8 − L4 − L5) +
16m2

K

f 2
0

(2L6 − L4)

]

m2
K =m2

0 K

[

1 +
16m2

K

f 2
0

(2L6 + L8 − L4 −
1

2
L5) +

8m2
π

f 2
0

(2L6 − L4)

]

(41)

where the 0 subscript refers to bare quantities.

B.0.2 ππ → ππ scattering

The definite isospin amplitudes T (I) are obtained from just one amplitude T :

T (0)(s, t, u)=(3T (s, t, u) + T (t, s, u) + T (u, t, s))/2

T (1)(s, t, u)=(T (t, s, u) − T (u, t, s))/2

T (2)(s, t, u)=(T (t, s, u) + T (u, t, s))/2

(42)

where T = T2 + T4 is given by:

T2=
m2

π − s

f 2
π

(43)

T4=− 4

f 4
π

{

(2L1 + L3)(s − 2m2
π)2 + L2

[

(t − 2m2
π)2 + (u − 2m2

π)2
]

+2(2L4 + L5)m
2
π(s − 2m2

π) + 4(2L6 + L8)m
4
π

}

which have been obtained at tree level from L2 and L4, respectively.
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B.0.3 Kπ → Kπ scattering

Using crossing symmetry, we can write the I = 1/2 amplitude in terms of that with I = 3/2,
as

T (1/2)(s, t, u) =
3

2
T (3/2)(u, t, s) − 1

2
T (3/2)(s, t, u) (44)

where

T
(3/2)
2 =

s − (m2
π + m2

K)

2fπfK
(45)

T
(3/2)
4 =− 2

f 2
πf 2

K

{

(4L1 + L3)(t − 2m2
π)(t − 2m2

K) + 2L2(m
2
π + m2

K − s)2

+ (2L2 + L3)(m
2
π + m2

K − u)2 + 4L4

[

(m2
π + m2

K)t − 4m2
πm

2
K

]

+ L5

[

(m2
π + m2

K)(m2
π + m2

K − s) − 4m2
πm

2
K

]

+ 8m2
πm2

K(2L6 + L8)
}

once more, they have been obtained, respectively, from L2 and L4 at tree level.

B.0.4 KK → KK scattering

The definite isospin amplitudes can be written just in terms of two:

T (0)(s, t, u)=T+−+−(s, t, u) + T 0̄0+−(s, t, u) (46)

T (1)(s, t, u)=T+−+−(s, t, u) − T 0̄0+−(s, t, u)

where T+−+− is the amplitude for K+K− → K+K−, whose respective O(p2) and O(p4)
contributions are

T+−+−
2 (s, t, u)=

u − 2m2
K

f 2
K

(47)

T ,+−+−
4 (s, t, u)=− 4

f 4
K

{

2L2(u − 2m2
K)2 + (2L1 + L2 + L3)

[

(s − 2m2
K)2 + (t − 2m2

K)2
]

−2u m2
K(2L4 + L5) + 8m4

K(2L6 + L8)
}

whereas T 0̄0+− is the amplitude for K
0
K0 → K+K−, which is given by

T 0̄0+−
2 (s, t, u)=

u − 2m2
K

2f 2
K

(48)

T 0̄0+−
4 (s, t, u)=− 2

f 4
K

{

(4L1 + L3)(s − 2m2
K)2 + (2L2 + L3)(t − 2m2

K)2 + 2L2(u − 2m2
K)2

+2s m2
K(4L4 + L5) +

2

3
t m2

K(2L4 + L5) − 8m4
K(2L4 + L5 − 2L6 − L8)

}

B.0.5 ππ → KK scattering

Again, we can use crossing symmetry to obtain, from Kπ → Kπ, the definite isospin ampli-
tudes TI of this process:

T (0)=

√
3

2

(

T (3/2)(u, s, t) + T (3/2)(t, s, u)
)

(49)

T (1)=
1√
2

(

T (3/2)(u, s, t) − T (3/2)(t, s, u)
)
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B.0.6 Kη → Kη scattering

This process is pure I = 1/2. We obtain the following contributions to the amplitude:

T2(s, t, u)=
6m2

η + 2m2
π − 9t

12fηfK

(50)

T4(s, t, u)=− 1

3f 2
Kf 2

η

{

2(t − 2m2
K)(t − 2m2

η)(12L1 + 5L3) +
[

(u − m2
η − m2

K)2 (51)

+
(

s − m2
η − m2

K)2
]

(12L2 + L3) + 2(t − 2m2
K)
[

11m2
K(2L4 + L5) − m2

π(L4 + 3L5)
]

+4m4
K [3(2L4 + L5) + 32(L6 + L7 + L8)] + 2(t − 2m2

η)
[

9m2
K(2L4 + L5) + m2

π(3L4 − L5)
]

+4m4
π(16L7 + 8L8 − L5) + 6L5m

4
η − t

[

m2
K(24L4 + 7L5) + 2m2

π(6L4 − L5) + 9L5m
2
η

]

+6m2
ηm

2
K(4L4 + L5) + 2m2

ηm
2
π(6L4 + L5) + 2 m2

Km2
π [6L4 + L5 − 8(2L6 + 7L8 + 12L7)]

}

B.0.7 Kη → Kπ scattering

The I = 1/2 amplitude can be obtained as follows:

T (1/2)(s, t, u) =

√

3

2
T

K
0
η→K−π+

(s, t, u) (52)

The O(p2) and O(p4) contributions to K
0
η → K−π+ are

T2(s, t, u)=

√
6
[

8m2
K + 3m2

η + m2
π − 9t

]

36fKfη
(53)

T4(s, t, u)=−
√

2/3

3f 2
Kf 2

η

{

3L3

[

2(t − m2
π − m2

η)(t − 2m2
K) − (s − m2

K − m2
π)(s − m2

K − m2
η)

− (u − m2
K − m2

π)(u − m2
K − m2

η)
]

+ L5

[

(t + m2
π − m2

η)(7m
2
K − 5m2

π)

+ 4m2
K(3t − 3m2

π − m2
η) + 2(t − 2m2

K)(m2
K + m2

π) + 4(m4
π − m4

K)
]

+ +16(2L7 + L8)(m
4
π − 2m4

K + m2
Km2

π)
}

B.0.8 ηπ → ηπ

This channel is pure I = 1 isospin. The amplitude is given by

T2(s, t, u)=
−m2

π

3fηfπ

(54)

T4(s, t, u)=− 4

3f 2
Kf 2

η

{

(t − 2m2
π)(t − 2m2

η)(6L1 + L3) + 4t L4(m
2
π + 2m2

K)

+(3L2 + L3)
[

(s − m2
π − m2

η)
2 + (u − m2

π − m2
η)

2
]

+ m4
π(4L4 − L5 − 8L6 + 32L7 + 12L8)

− 16m2
Km2

π(L4 − 2L6 + 2L7) − 3m2
πm

2
η(4L4 + L5)

}

(55)
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Table I: Physical states used in the different I, J channels

I=0 I=1/2 I=1 I=3/2 I=2

J=0
ππ
KK̄

Kπ
Kη

πη
KK̄

Kπ ππ

J=1 KK̄
Kπ
Kη

ππ
KK̄

Table II: Fit parameters L̂i · 103 and comparison with the Lr
i · 103 of χPT

qmax = 1.02 GeV L̂1 L̂2 L̂3 L̂4 L̂5 2L̂6 + L̂8 L̂7

0.5 1.0 −3.2 −0.6 1.7 0.8 0.2

µ = 1.2 GeV Lr
1 Lr

2 L3 Lr
4 Lr

5 2Lr
6 + Lr

8 L7

0.1
±0.3

0.9
±0.3

−3.5
±1.1

−0.7
±0.5

0.4
±0.5

0.0
±0.3

−0.4
±0.2

22



Table III. Masses and partial widths in MeV

Channel
(I, J)

Resonance
Mass

from pole
Width

from pole
Mass

effective
Width

effective
Partial
Widths

(0, 0) σ 442 454 ≈ 600 very large ππ − 100%

(0, 0) f0(980) 994 28 ≈ 980 ≈ 30
ππ − 65%
KK̄ − 35%

(0, 1) φ(1020) 980 0 980 0
(1/2, 0) κ 770 500 ≈ 850 very large Kπ − 100%
(1/2, 1) K∗(890) 892 42 895 42 Kπ − 100%

(1, 0) a0(980) 1055 42 980 40
πη − 50%

KK̄ − 50%
(1, 1) ρ(770) 759 141 771 147 ππ − 100%

Fig.1: Results in the I = J = 0 channel. (a) phase shifts for ππ → ππ as a fraction of the CM energy of the

meson pair: full triangle [19], open circle [20], full square [21], open triangle [22], open square [23] (all these

are analysis of the same experiment [18]), cross [24], full circle [25], empty pentagon [26]. (b) phase shifts

for KK̄ → ππ: full square [27] , full triangle [28]. (c) Phase shifts for KK̄ → KK̄. (d) Inelasticity: results

and data for (1 − η2)/4: starred square [26], full square [27] , full triangle [28], full circle [29].
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Fig. 2: Results in the I = J = 1 channel. (a) phase shifts for ππ → ππ. Data: open circle [24], black square

[30]. (b), (c) same as in fig. 1. (d) inelasticity.

Fig. 3: Phase shifts for ππ → ππ in the I = 2, J = 0 channel. Data: cross [31], empty square [32], full

triangle [33].
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Fig. 4: Results in the I = 1, J = 0 channel. (a) phase shifts for πη → πη. (b) Invariant mass distribution

for πη data from [34]. (c) Phase shifts for KK̄ → πη. (d) inelasticity.

Fig. 5: Results in the I = 1/2, J = 0 channel. (a) phase shifts for Kπ → Kπ. Data: full circle [36], cross

[37] , open square [38], full triangle [39]. (b) phase shifts for Kπ → Kη. (c) phase shifts for Kη → Kη. (d)

inelasticity.
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Fig. 6: Results in the I = 1/2, J = 1 channel. (a) phase shifts for Kπ → Kπ. Data: full triangle [36], open

circle [39]. (b) phase shifts for Kπ → Kη. (c) phase shifts for Kη → Kη. (d) inelasticity.

Fig. 7: Phase shifts for Kπ → Kπ in the I = 3/2, J = 0 channel. Data: open triangle [39], open circle [42].

Fig. 8: (|TIJ=01|)2 for KK̄ → KK̄ showing the singularity corresponding to the φ resonance.
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Fig 9: Imaginary part of the ππ amplitude in the (I,J)=(0,0) channel in the second Riemann sheet. On the

left we show a three dimensional plot were we can observe the different structure of the σ and f0 poles. On

the right we show a contour plot of the lower half plane of the second sheet. The σ pole is very far away

from the real (physical) axis and its lines of maximum gradient are parallel to it, in contrast with the f0.

That is why the effect of both poles in the phase shifts (Figure 1) is so different.
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Fig 10: The poles associated to the ρ (left) and a0 (right) are oriented differently. The ρ mass seen on the

(I,J)=(1,1) phase shifts is slightly bigger than the real part of the position of the ρ pole, whereas the peak

of the mass distribution where the a0 is observed (see Figure 4) is smaller than the real part of the a0 pole.

Concerning the widths, they are obtained as twice the imaginary part of the associated pole position.
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